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An experimental investigation has been made to determine the dynamic

stability and control characteristics of a 1/6-scale flying model of the

Hawker P ll2 7 Jet vertical-take-off-and-landing (VTOL) airplane in hov-

ering and transition flight. The model was powered by a counter-rotating

ducted fan driven by compressed-alr Jets at the tips of thefan blades.

In hovering flight the model was controlled by Jet-reaction controls which

consisted of yaw and pitch Jets at the extremities of the fuselage and a

roll Jet on each wing tip. In forward flight the model was controlled by

conventional ailerons and rudder and an all-movable horizontal tail. In

hovering flight the model could be flown smoothly and easily, but the roll

control was considered too weak for rapid maneuvering or hovering in gusty

air. Transitions from hovering to normal forward flight and back to hov-

ering could be made smoothly and consistently and with only moderate

changes in longitudinal trim. The model had a static longitudinal insta-

bility or pltch-up tendency throughout the transition range, but the rate

of divergence in the pltch-up was moderate and the model could be control-

led easily provided the angle of attack was not allowed to become too high.

In both the transition and normal forward flight conditions the lateral

motions of the model were difficult to control at high angles of attack,

apparently because of low directional stability at small angles of sideslip.

The longitudinal stability of the model in normal forward flight was gen-

erally satisfactory, but there was a decided pltch-up tendency for the flap-

down condition at high angles of attack. In the VTOL landing approach

condition, with the Jets directed straight down or slightly forward, the

nose-down pitch trim required was greater than in the transitions from hov-

ering to forward flight, but the longitudinal instabilltywas about the

same. Take-offs and landings in still air could be made smoothly although

there was a slight unfavorable ground effect on lift and a nose-down

change in pitch trim near the ground. Short take-offs and landings could

be made smoothly and consistently although the model experienced a decided

nose-up change in pitchingmoment as it climbed out of ground effect.
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INTRODUCTION

At the request of the Air Force an investigation has been made to
determine the low-speed dynamic stability and control characteristics of

a 1/6-scale flying model of the Hawker P 1127 Jet vertical-take-off-and-
landing (VTOL) airplane in hovering and transition flight. This airplane
has a swept wing mounted high on the fuselage and is powered by a single

Bristol Siddeley BS _3 turbofan engine exhausting through four rotatable

nozzles, two on each side of the fuselage. Take-offs and landings with

the airplane in a horizontal attitude are made with the nozzles rotated
so that the exhaust of the engine is directed downward. In forward flight

the nozzles are rotated so that the exhaust of the engine is directed to

the rear. Control for hovering and low-speed flight is provided by Jet-
reaction controls located near the airplane extremities (the wing tips

and the ends of the fuselage). Conventional aerodynamic controls con-

sisting of ailerons, rudder, and an all-movable horizontal tail are pro-
vided for control in normal forward flight.

The investigation consisted of: (I) free-flight tests in still air

for the study of the vertical-take-off-and-landing and hovering-flight

conditions, (2) free-flight tests in the Langley full-scale tunnel for

the study of slow constant-altitude transitions, and (3) control-line

tests to study longitudinal stability and control in rapid transitions
and short take-offs and landings. Force tests were also made, mainly

as an aid in the interpretation of the fllght-test results.

SYMBOLS

The forces and moments are referred to either the wind axes or the

body axes, and the particular axis system used is indicated on each of

the figures in which the data are presented. The wind axes are shown

in figure 1 and the body axes, in figure 2. These figures also show the

positive direction of forces, moments, and angles.

S wing area, sq ft

b wing span, ft

V airspeed, knots

P air density, slugs/cu ft

q dynamic pressure, -_-, ib/sq ft
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cz_

c_
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Fy_

chord, ft

angle of attack, deg

angle of sideslip, deg

thrust of Jet control, lb

lateral force, lb

rolling moment, ft-lb

pitching moment, ft-lb

yawing moment, ft-lb

Fy
lateral-force coefficient, --

qS

rolling-moment coefficient, MX
qSb

L_

MZ
yawing-moment coefficient, --

qSb

variation of lateral-force coefficient with angle of sideslip,

.X, per deg

variation of rolling-moment coefficient with angle of sideslip,

_c_

_-._-, per deg

variation of yawing-moment coefficient with angle of sideslip,

_C n

_-_-, per deg

_My
variation of pitching moment with angle of attack, _--,

ft-lb/deg

_Fy
variation of lateral force with angle of sideslip, _-_-,

Ib/deg

r-'--
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Ix

Iy

Iz

X, Y, Z

variation of yawing moment with angle of sideslip,

ft- ib/de g

variation of rolling moment with angle of sideslip,

ft- lb/de g

wing-flap deflection, deg

nozzle angle relative to fuselage reference line, deg

height of bottom of wheels of main landing gear above

ground, in.

thickness-chord ratio

horizontal-tail incidence relative to fuselage reference

line, deg

angle of pitch of fuselage reference llne relative to normal

ground angle of airplane of 9°, deg

angle of bank about fuselage X-axis, deg

moment of inertia about X-axis, slug-ft 2

moment of inertia about Y-axis, slug-ft 2

moment of inertia about Z-axis, slug-ft 2

longitudinal, lateral, and vertical axes

Subscript:

W wind axis system

APPARA_'JS AND TESTS

Model

Photographs of the i/6-scale model are presented in figures 3 and 4,

and a sketch showing some of the more important model dimensions is pre-

sented in figure 5. It should be noted that, for some flight tests, the
model was provided with an alternate wing flap with the revised planform

_
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indicated by dashed lines in figure _. A sketch showing the location

of strakes and wing-tank pylons and an alternate horlzontal-tall position

on the model is presented as figure 6. The geometric characteristics of

the model are presented in table I, and the mass characteristics are pre-

sented in table II. The engine exhaust nozzles on the sides of the fuse-

lage rotated through angles as great as lO0 ° for various phases of the

transition and vertical rake-offs and landing maneuvers.

The model was powered by a counter-rotating ducted fan powered by

compressed-alr Jets at the tips of the fan blades. This power plant gave

a reasonably accurate simulation of the engine of the full-scale airplane

from an aerodynamic point of view. It was not possible, of course, to

represent exactly the characteristics of the full-scale turbofan engine
with the cold airflow of the model. In order to represent the jet inter-

ference properly, it was believed necessary to duplicate correctly the

thrust of the individual nozzles and to represent approximately the proper

size of the Jet stream from each nozzle. Also, in order to represent the

aerodynamic effects of the inlet, it was believed necessary to have the

proper scaled-down inlet mass flow. For the exhaust simulation, there-

fore, the individual thrusts of the front and rear nozzles were correctly

scaled and the total exhaust nozzle area was exactly the true scaled

value. With these two characteristics set, the front nozzles were

slightly larger than scale size, the rear nozzles were slightly smaller

than scale size, and therefore the exhaust stream was approximately the

correct scale size. With the exhaust flow represented in this manner,

the inlet mass flow was about 90 percent of the correct scaled-down mass

flow. The power simulation was set up in the foregoing manner for the

static thrust condition. The adequacy of the simulation was not checked

for forward flight conditions but the simulation must have been reason-

ably good since the conditions for flight required that the exhaust

momentum, or thrust, be correctly represented.

Control for hovering flight was obtained by means of continuous-

bleed air Jets directed downward and located on the front and rear of

the fuselage and on each wing tip. Roll control was obtained by reducing

the thrust of one wing-tip Jet and increasing the thrust of the other

wing-tip Jet. Pitch control was obtained by reducing the thrust of the

Jet at one end of the fuselage and increasing the thrust of the Jet at

the opposite end of the fuselage. Yaw control was obtained by rotating

the pitch-control jets differentially about an axis parallel to the fuse-

lage reference llne with a maximum deflection of 20 °. Each of the Jet-

reaction controls was adjusted to give approximately the scaled-down

moment produced by the Jet-reactlon controls of the airplane inhovering

flight. The moment produced by the Jet-reaction controls varied with

the power required to fly because the air for the reaction controls was

obtained by bleeding the air supply to the ducted-fan power unit. The

calibration of the pitch and roll Jet controls is presented as figure 7.



The calibration showsthe variation of F, the thrust of a single control

Jet in pounds, with the static thrust of the model power plant in pounds.

The manner in which the Jet control force varies with engine thrust for

the full-scale airplane is not known; but, if it is presumed that the

controls use a constant percentage of the high-pressure compressor air-

flow, as would seem to be the case, the true scaled-down variation would

be that indicated by the dashed curve on figure 7 for comparison with the

model characteristics. These data indicate that the model had slightly

more than the correct scaled-down Jet control forces at the hovering

thrust of about h2 pounds and less than scale thrust at low power settings.

_ne aerodynamic controls for forward flight consisted of conven-

tional ailerons, rudder, and an all-movable horizontal-tail. The ailerons

and horizontal tall were always operated in conjunction with the roll and

pitch Jet controls. The rudder was used for directional trim in forward

flight, but was not operated in conjunction with the Jet yaw control,

since the Jet control, operated by the deflections required in hovering

flight, provided all the yawing moment that was required in forward flight

for the range of speeds covered in the tests.

All controls (aerodynamic and jet) were of the flicker type (full

on or off) with integrating trimmers. These trimmers trimmed the control

a small amount in the direction the control was moved each time a control

deflection was applied. With actuators of this type, a model becomes

accurately trimmed after flying a short time in a given flight condition.

The aerodynamic-control deflections applied by a flick of the controls

were as follows:

Horizontal-tail deflections, deg ................. ±7

Rudder deflections ................ used for trim only

Aileron deflections, deg ................... ±7 to ±14

The thrust of the ducted-fan power unit was adjusted by means of a

valve in the air supply llne, with approximately 5_ feet of flexible

hose between the valve and the model. This long length of hose between

the throttling valve and the model motor, of course, caused considerable

lag in the thrust control which was somewhat objectionable, but was no

worse than the lag in other systems used to power free-flight models.

Test Equipment and Technique

Transition and landing approach flight tests were conducted in the

test section of the Langley full-scale tunnel using the test setup illus-

trated in figure 8. This sketch shows the pitch pilot, the safety-cable

operator, and the power operator on a balcony at the side of the test

section. The roll and yaw pilots were located in an enclosure in the



lower rear part of the test section. The pitch, roll, and yaw pilots
were located at the best available vantage points for observing and
controlling the particular phase of the motion with which each was con-
cerned. Motion-picture records were obtained with fixed camerasmounted
near the pitch pilot and at the top rear of the test section.

The air for the ducted-fan power unit, Jet controls, and control
actuators was supplied through flexible plastic hoses while power for the
electric trim motors and control solenoids was supplied through wires.
These wires and tubes were suspendedoverhead and taped to a safety

J-- %

cable (_- inch braided aircraft cable) from a point approximately
%--

15 feet abovethe model down to the model. The safety cable, which was

attached to the top of the wing over the center of gravity, was used to

prevent crashes in the event of a power or control failure, or in the

event that the pilots lost control of the model. During the flight the

cable was kept slack so that it would not appreciably influence the

motions of the model.

The test technique is best explained by describing a typical flight.

The model hung from the safety cable and the power was increased until

the model was in steady hovering flight. At this point the tunnel drive

motors were turned on and the airspeed began to increase. As the airspeed

increased, the controls and power were operated and the nozzles on the

sides of the fuselage were rotated so that the Jets were tilted progres-

sively to maintain the fore-and-aft position of the model in the test

section as the speed was increased and the transition to normal forward

flight was performed. Transitions made in this manner were limited to

very low rates of acceleration because of the slow rate at which the

tunnel airspeed could be increased. Of course, it was also possible to

hold the tunnel speed constant at various values in the transition range

so that the model could be flown for extended periods of time at various

stages in the transition range for detailed study of its behavior in

these conditions. It was also possible to make slow-down transitions

by reducing the airspeed in the tunnel, but there was little difference

between the conditions for speed-up and slow-down transitions in the

tunnel because of the low rates of change of tunnel speed that could be

obtained. All these tests were made at effectively zero longitudinal

acceleration. In most cases the flight was terminated by gradually taking

up the slack in the safety cable while reducing the power to the model.

One of the proposed techniques for the landing approach and transi-

tion of the airplane is to start the approach in either level or gliding

flight by reducing power to idle and rotating the nozzles to a deflec-

tion of 90 ° or iO0 °. As the airspeed drops off or is reduced in a flare,

and the wings are no longer capable of supporting the airplane, the engine

thrust is gradually increased to maintain the necessary lift until the
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airplane comes to a st_p i_:_6_i_g" f_fght.. Err order to simuIat_ t_f_

condition in the tunnel, the m_1_l _as l_rop_fled with a compressed-air

Jet exhausting rearward from th_ _ar _ _f tl_e fuselage so that the model

could be flown in steady Ievel f_fig_t wit5 the engine nozzles at an

arbitrary deflection and _hfus_ _$in_ _at would not propel the model

in level flight. The thrus_ Of t_is Jet effectively represented the

forward component of the welg_ 09 f_e ai:rpla_e in a gliding descent or

the force due to longitudfns1 d_C_leraZion. _i-s device theTefore made

it possible to duplicate tl_e _6rod3mamic fOr_-es and engine thrust and

nozzle deflection condi_i-o-_g c6_TespDnd'fng _o descent or deceleration

conditions with the model _y_ng i_ Ievel eo_ns_nZ-speed flight in the

tunne I.

For these landing-appro-ach _n_ transition _ests the model was towed

by the safety cable as the airgl_ of the tannel was increased to the

test condition. The _angle of atZaok was then inc,'eased to the condition

desired for the test, the engine t_ru_t was brought up to supply the

remainder of the lift _ece_sary to" gupport the model, and the thrust of

the propulsion Jet at the _ear o# t_e fuselage w_s increased to balance

the drag of the model. Once the _e_ condition had been established the

model could be flown steadily _ thig con_io_ or the tunnel airspeed

could be gradually reduced t_ g@20 and the la_ding_ or slow-down, transi-

tion performed.

The vertical take-off, landing, _d hovering flight tests were made

by using the same general setup _md test te_iqne used for the transi-

tion tests except that these tests wer_ conducted in the return passage

of the full-scale tunnel for c6fiVeni@n_e and to provide protection from

weather and from the random e#fe_s of outside air gusts. The air in

the return passage of the tun_e_ w_ not completely still after a short

period of flight, however, becau_ of the rando_ recirculation of the

model exhaust.

The control-line fac_li_] _s _ilustrated in figure 9 and described

in detai_ in reference i. _as_aiiy the _O_trol-line facility consists

of a crahe with a Jib boom to _Gv_ds an overhead support for the safety

cable. The pilot and operators ride in the _ab of the crane so that they

will always fade the model as it fi_es in a circle at the end of a

restraining line which opposed the centrifugal force. The restraining

line entered the model at the_center o# gravity and provided some restraint

of the lateral freedom of the model but did not affect the longitudinal

degrees of freedom. The facility is mounted on a pedestal in the middle

of a large concrete apron located in a wooded area which serves as a wind

break. With this facility rapid transition _llght_ from hovering to nor-

mal forward flight, or vice versa, can be made since the crane has a high

rate of acceleratlon, Actually the c2_lue c_ a_eierate rapidly enough

to keep up with a forward or rearward _o_el &_eleration of i g. Running

take-offs ah_ iandings can also be per#@r_e_ with this facility.
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Tests

The Investigation conslsted mostly of flight tests to study the

stability and control characteristics of the model. The stability and

controllability were determined in various tests either qualitatively

from pilots' observations or quantitatively from motion-plcture records

of the flights.

Flight tests were made in the test section of the full-scale tunnel

to determine the overall stability and control characteristics of the

model in transition flight from hovering to forward flight. These flights

were slow constant-altitude transitions covering a speed range from about

0 to 48 knots (full-scale airspeeds from 0 to ll8 knots). Since small

adjustments or corrections in the tunnel airspeed could not be made

readily, the pitch pilot and the power operator had to make adjustments

continually to hold the model in the center of the test section. Flights

were also made in which the airspeed was held constant at intermediate

speeds so that the stability and control characteristics at a particular

speed could be studied. The transition tests also included flights to

represent the proposed landlng-approach condition for the airplane in

which the nozzles are kept at approximately lO0 ° incidence during the

approach and transition.

In order to study the stability and control characteristics of the

model in rapid transitions and short take-offs and landings, flight tests

were also made on the control-line facility. This part of the investiga-

tion was limited to a study of longitudinal stability and control since

the model is restrained in the lateral degrees of freedom by the control

line.

Hovering flight tests were made with the model hovering at heights

of 5 to 15 feet above the ground to determine the basic stability and

controllability of the model. Hovering flight tests were also made at

very low heights in order to study the effects of ground proximity on

stability and control. Vertical rake-offs and landings were also made

to study the behavior of the model in these transient conditions. These

take-off and landing and ground-effect tests were made both with and

without the strakes shown in figure 6 and with and without the wing-tank

pylons.

Some preliminary force tests were made in a low-speed tunnel with

a 12-foot octagonal test section in an effort to determine some of the

stability and control characteristics of the model in transition flight.

The longitudinal force tests were made at various nozzle angles for a

range of power settings. The lateral tests were made at various nozzle

angles with power on at the setting required to balance the drag along

the wind axis for the zero sideslip condition. These lateral testsj
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therefore, duplicated the condition of flight at zero longitudinal accel-

eration which was the conditiQn for the free-flight tests in the Langley

full-scale tunnel. Practically all the force tests were made with the

model in the original, or basic, condition, but a few tests were made

with the horizontal tail in the alternate position to study the effect

of this change in tall location on static longitudinal stability. A few

force tests were also made to determine the variation of pitching moment,

rolling moment, and lift with height of the _model above the ground. These

tests were made inside where the model was free from the random effects

of outside air gusts.

All the force tests and most of the flight tests were made with the

flap shown in solid lines in figure 5 used for the flap-down conditions.

It should be understood that the symbol 8f or the term "flap-down"

refers to the use of this flap except in the case of a few slow transi-

tion flight tests in the full-scale tunnel where the use of the alternate

flap, shown by dotted lines in figure 5, is specifically mentioned.

RESULTS AND DISCUSSION

A motlon-plcture film supplement illustrating the flight-test results

has been prepared and is available on loan. A request card form and a

description of the film will be found at the back of this paper, on the

page immediately preceding the abstract and index pages.

Hovering Flight

The model could be flown successfully in hovering flight in relatively

still air. It could be flown smoothly and could be maneuvered readily

from one position to another. The main difficulty encountered in the
tests was that the roll control was undesirably weakwhen the Jet-reactlon

control power was set at the proper value to represent the design value

for the full-scale airplane.

As pointed out previously, the roll Jet-reactlon controls were not

as strong as might be desired, and it was sometimes difficult for the

pilots to restore the model to a steady-flight condition after it had

been allowed to move about quickly or after it had been disturbed by a

violent motion of the flight cable or by turbulence in the air induced

by recirculation of the exhaust air from the model. Wlth the thrust of

the roll Jet-reactlon control increased to give approximately 1.5 times

the scaled-down control moment of the airplane, the model could be

maneuvered fairly easily and could be se$$1ed down quickly after fairly

violent disturbances. Even when the model was provided with this amount
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of control, however, its motions were not as smooth and steady and it

was not as easy to control as might be desired_ evidently because of the

absence of damping in roll. The results of the tests, therefore, indi-

cate that the pilot would have sufficient Jet-reaction control for hov-

ering the full-scale airplane in still air but a stronger Control would

be desirable to overcome disturbances such as might be experienced in

gusty air, and that some form of roll-rate stabilization would also be

desirable.

The pitching motions of the model seemed to be about neutrally

stable as would ordinarily be expected for a Jet VTOL configuration.

The pitching motions were relatively slow and were not easily excited

by outside effects such as gust disturbances or movements of the control

and power cable because of the relatively high moment of inertia of the

model in pitch. The jet-reaction pitch control seemed entirely adequate

for control of the model in any condition encountered in the tests; it

was strong enough to give adequate rates of acceleration for adequate

control, but not overly powerful so that it would tend to lead to over-

control and a waste of power.

The yaw control of the model seemed adequate for safe visual flight

although it was much less than is recommended by suggested control cri-

teria of reference 2 as being desirable for helicopters and VTOL aircraft

in hovering and low-speed forward flight.

Vertical Take-0ffs and Landings and Ground Effect

Vertical take-offs and landings could be performed smoothly and

consistently in still air. For the model in the basic configuration

there appeared to be a slight adverse ground effect on the llft and a

slight nose-down trim change when the model was near the ground. The

use of longitudinal strakes on the underside of the fuselage as sug-

gested by the manufacturer and shown in figure 6 caused the ground effect

on llft to become slightly favorable, but also caused an increase in the

nose-down trim change. The use of wing-tank pylons with the strakes

appeared to cancel the effects of the strakes in that there was no appar-

ent difference in the flying characteristics between this configuration

and the basic model. Deflecting the flaps down 50 ° on the basic model

made no change in the effect of the proximity of the ground on lift and

pitch that was noticeable in the flight tests. Although the model

experienced changes in pitch trim with height above the ground in all

of the take-off and landing tests, the pilot had no difficulty in con-

trolling the model by using approximately one-half the scaled'd0wn pitch

and yaw Jet control forces. The scaled-down roll'Jet control force was

used in all of the take-off and landing tests and was considered weak as

it had been considered in the hovering flight tests.



12

• @ @U • @_ U • • • • @ @6 • •
U * • @ • • Oe_

• @Da * U • @U •1

The results of some preliminary force tests made to determine the

effect of the proximity of the ground on the lift and the static lateral

and longitudinal stability of the model are presented as figures l0 to 13.

The data presented in figure lO show that, for the basic model, there was

about a 2-percent adverse effect on lift and a nose-down trim change when

the model was near the ground. The use of strakes on the underside of

the fuselage caused the ground effect on lift to become favorable but also

increased the nose-down trim change. The addition of wing-tank pylons to

this configuration made the ground effect on llft more adverse and reduced

the trim change to that of the basic model. In general, the variation

of pitching moment with height above the ground was about the same for

the flap-down condition as for the flap-up condition. The force tests

indicated that the effect of ground proximity on lift, however, was some-

what more adverse for flap-down condition than the flap-up condition;

but, as previously indicated, this difference was not sufficient to be

noticeable in the flight tests.

The effect of the proximity of the ground on the static longitudinal

stability of the model is shown by the data presented in figure ll. The

data show that the basic model has neutral static longitudinal stability

when out of ground effect, as would be expected, and becomes generally

unstable as it approaches the ground. At heights below about 12 inches

the model is about neutrally stable for nose-down changes and unstable

for nose-up changes in pitch attitude. (Note that the pitch angle indi-

cated in fig. ll is measured relative to the normal 9° ground angle of

the model. ) This instability for nose-up changes is presumed to result

from a change in the reflection of the downwardly deflected Jets back

up around the horizontal tall as a result of changes in pitch attitudes

of the model. A comparison of the data presented in figures ll(a)

to ll(d) shows that the use of strakes, flaps, extension of the landing-

gear doors, did not have any great effect on thestatic longitudinal

stability of the model. The data presented in figures ll(e) to ll(h)

show that the pitch Jet-reactlon controls had an appreciable effect on

the longitudinal stability particularly when the model was close to the

ground. With the Jet controls on, the model becomes stable for nose-

down changes in pitch attitude when close to the ground.

The data presented in figures 12 and 13 show that the model is

statically unstable in roll when near the ground. The use of strakes,

wing-tank pylons, or flaps had no appreciable effect on the static

lateral stability as shown by the data presented in figures 12(a) to 12(f).

The data of figures ]2 and 15 show that the roll Jet-reaction controls

caused no appreciable change in the stability of the basic model or of

model with flaps deflected, but for the strakes-on case the model was

slightly less unstable close to the ground.
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Transition Flight

Longitudinal characteristics in slow transitions.- Slow constant-
altitude transitions from hovering to forward flight or steady flight

at more-or-less constant airspeeds in the transition range could be made

smoothly and consistently on the control-llne facility or in the test

section of the full-scale tunnel. At low angles of attack the model

appeared to be neutrally stable or sllghtlyunstable and at the high

angles of attack it had a decided pltch-up tendency in the transition

range. The rate of divergence of the pitch-up was moderate because of

the low airspeeds involved and could be controlled easily provided the

angle of attack was not allowed to become too high. In order to provide
adequate nose-down moment for trim and Control in the transition range,

howeverj it was necessary to change to a range of stabilizer incidence
of -2° to +12 ° instead of the range of -12° to +3° which was originally

specified by the manufacturer. This change in stabilizer incidence

range was obtained by changing the linkage between the stabilizer and

pitch control Jet so that the stabilizer was at _l_ when the pitchthe

Jet was in the neutral position for hovering flight instead of being

at -4° when the pitch jet was neutral. The actual range of stabilizer
incidence used for trim at various conditions is shown in table III.

These data show that with the revised tail-incldence range, there was

very little change in trim during the transition3 the maximum change

being from _o incidence for hovering to 8° incidence for intermediate
2

transition speeds. This change corresponds to a trim change from neutral

control to one-half of the maximum available nose-down control during

the transition. It should be realized that in all the tests the pitch
Jet was operating in conjunction with the stabilizer in such a manner
that it reached maximum moment in one direction or the other at the same

time that the stabilizer reached the end of its range.

The results of some preliminary force tests to determine the static

longitudinal stability of the model are presented as figures 14 to 20

and a plot of -My_ for angles of attack of 9°, 10°j 15°, and 20° against

forward airspeed for the condition of zero drag is presented as figure 21o

The data presented in this figure, both values of -Mym and V, have

been scaled up from the basic data to a llft of 41 pounds which was the

actual weight of the model during the flight tests in the full-scale tun-

nel. At this weight the model represented the full-scale airplane at

a weight of 8,896 pounds. These data show that for both flap conditions

the model is statically unstable in the transition range and slightly

stable in forward flight (A = 0o), and that the instability in the transi-

tion range becomes greater with increased angle of attack. The increased

instability at the higher angles of attack was very apparent in the transi-
tion tests made in the test section of the full-scale tunnel because the
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limited airspeed used in these tests (48 knots) caused the model to be at

too high an angle of attack to-complete the transition consistently for

the flap-up condition. A limit of 48 knots on the tunnel airspeed _as

selected because it is the point where a pole change on the tunnel drive

motors is required for higher speeds. This pole change causes a decided

lag in the build-up of airspeed which is inconvenient and was avoided in

the present tests by completing the transition at 48 knots. The model

could be flown up to this speed very satisfactorily at low angles of

attack and high Jet deflections with the flaps at a deflection of either

0° or 50 °. During the process of rotating the nozzles further to get

the model completely wlng-borne at this speed with flaps up, however, it

was necessary to increase the angle of attack to about 18°. The pitch-up

instability was very strong in this condition and the model frequently

pitched up out of control. For the flap-down condition, by way of com-

parison, the angle of attack never exceeded 13° during the process of

making the transition to wlng-borne flight at the same speed, and the

instability was never great enough to cause an uncontrollable pitch-up.

Analysis of the force-test data indicate that this apparent difference

between stability for the flap-up and flap-down conditions was simply

the result of the arbitrary limitation on airspeed imposed in the wind-

tunnel flight tests, and there was no reason to expect any significant

difference if the transition to completely wing-borne flight were delayed

to a higher airspeed, for example, to 65 or 70 knots. This analysis was

supported by the results of the control-llne tests in which no significant

difference between the flap-up and flap-down conditions was found except

in steady flight at an angle of attack of about 15 ° with nozzle deflec-

tions of about 45 ° . In this condition with flaps up, the model was con-

siderably more unstable than in the corresponding flap-down Condition.

In the slow transition tests, the model was also flown with the

alternate flap, shown by the dashed lines in figure 5, as well as with

the basic flap. There was no noticeable difference in the longitudinal

stability and control characteristics of the model with these two flaps.

In an effort to find a "fix" for the static longitudinal instability

of the model, force tests were made with th6 horizontal tail moved to the

low position shown in figure 6. The basic data from these tests are

presented in figure 20 and the results are summarized in figure 21(c).

These data show that the use of the low horizontal-tail location greatly

improved the static longitudinal stability. No flight tests were made

with the horizontal tail in the low position, however, because the model

was flyable With the original tail position and because it did not seem

very practical to put the tail of the actual airplane in the low posi-

tion where it would be swept by the engine exhaust as the nozzles were

rotated in performing the transition.

In the landing-approach and transition tests made in the full-scale

tunnel by the method previously descrlbed for simulating descent and

i
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deceleration conditions, a range of angles of attack from 4° to ii° and

forward speeds of 92 to 130 knots (full scale) were covered for nozzle

angles of 90 ° to lO0 °. In these tests it was found that the model had

about the same longitudinal and lateral stability and control charac-

teristics as it did in the slow transitions from hovering to forward

flight. The only significant difference between the VTOL landing-approach

condition and the slow transitions was that there was an increased nose-up

pitching moment which, of course, required an increased nose-down pitching

moment for trim. For example, a horlzontal-tail incidence of about lO °

was required for the approach condition as compared with 5° for the slow
transition condition.

Lqn_itudinal characteristics in rapid transitions.- Rapid transi-

tions from hovering to forward flight were made in the control-line tests

in as little as 7 seconds (17 seconds full scale). This time was as

rapid as the transition could be made without the loss of a significant

amount of altitude. In general the pilot much preferred to perform the

transition quickly instead of slowly since he was then not required to

control the model for as long a period of time in the transition range

where it was generally longitudinally unstable.

Slow-down transitions were made by starting with the model in normal

unaccelerated forward flight with the nozzles pointed straight back

(0° deflection) at an angle of attack of about 5°. The nozzles were then

rotated to lO0 ° deflection at a rate of 12° per second without changing

the throttle setting. It was, of course, necessary to reduce the angle

of attack somewhat as the nozzles rotated to prevent the model from

climbing. Then, as the model slowed down, the angle of attack was grad-

ually increased to about lO° to keep the lift constant as the speed

dropped off. As the model slowed down further, the throttle was advanced

to maintain the necessary lift without further increase in angle of attack.

These transitions were made in about 15 seconds (32 seconds full jscale).

It was found that slow-down transitions could be performed very easily

and consistently in this manner and that the control power was adequate

with the revised stabilizer incidence range (-2 ° to +12°).

The total pitch Jet control force (sum of force of front and rear

Jets) for the model for the power condition at the start of the slow-

down transition was 0.52 pound (ll2 pounds full scale). This force, of

course, increased as the thrust was increased during the transition until

at hovering it was 2.26 pounds (490 pounds full scale) for a model weight

of 45 pounds (9,700 pounds full scale). As pointed out previously, the

manner in which the Jet control force varies with engine thrust is not

known for certain, but is likely to be greater than that of the model at

low thrust settings as shown in figure 7. In any event, the control-

line tests showed that the slow-down transition was quite easy to per-

form by using the foregoing amount of control and the technique Just

I
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described. This technique was not especially developed; it was a very

natural procedure and was the only one tried in the tests.

Lateral characteristics.- The lateral motions of the model could be

controlled successfully but considerable effort on the part of the roll

pilot was required to keep the model positioned in the test section of

the tunnel. At low airspeeds these difficulties seemed to be an exten-

sion of the difficulties experienced in hovering flight because of low

control power and low damping in roll. At higher speeds, particularly

at 48 knots where the transition to completely wlng-borne flight was

being made, it seems likely that the difficulty resulted from low direc-

tional stability. This low directional stability is shown in the force-

test data of figures 22 and 23 . These data show that for the higher

angles of attack (lO ° to 20 °) the model was directionallyunstable, or

neutrally stable, for small angles of sideslip. The force-test data

also show that, in these conditions, the model had considerable positive

dihedral effect ,.(-C_)" During the flight tests the low directional

stability probably allowed the model to yaw around considerably at the

higher angles of attack so that the dihedral effect could produce rolling

moments which were difficult to control and keep trimmed. On the basis

of the force-test data and analysis of the flight results, it seems that

steps should be taken to improve the directional stability of the air-

plane at high angles of attack.

This investigation of the lateral stability and control character-

istics of the model was made with the alternate flap shown by the dashed

lines in figure 5 as well as with the basic flap. There was, however,

no noticeable difference in the lateral behavior of the model with these

two flaps.

Short Take-Offs and Landings

Short take-offs were made for a number of fixed nozzle angles from

0° (straight back) to 7_ °. From a performance standpoint these take-

offs did not represent the airplane very well. First, they were made

at fixed nozzle settings since the nozzles could not be rotated rapidly.

Second, the model did not have brakes to permit the engine thrust to be

brought up to a high value before the ground roll was started. Finally,

it took about 7 seconds (17 seconds full scale) for the engine to reach

the full-power condition which was arbitrarily limited in these tests to

the value that gave a static thrust-weight ratio of 0.9. Even with these

limitations, only about lO0 feet (600 feet full scale) was required for

the model to take off and reach a height of 8 feet (50 feet full scale)

for nozzle angles in the 30° to 60 ° range. From a stability and control

standpoint, these take-offs were quite easy to perform and there was no
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particular characteristic to note except that the model experienced a

decided nose-up change in pitching moment as it climbed out of ground

effect.

A few short landings were also made with a nozzle angle of 60 °. In

these landings the effect of the ground in causing a nose-down pitching

moment was not as evident as it had been in the take-off tests since the

pilot was pulling the elevator up anyway as the model neared the ground

to execute a flare. It is likely, therefore, that the nose-down pitching

moment due to ground effect, if there was one, simply seemed like an

increase in stick-position stability. It is also likely that the ground

effect on trim was much less for the landing condition than for the take-

off condition because of the lower power setting, since the ground effect

on pitching moment is presumed to result from the reflection of the down-

wardly deflected Jet back up around the tail plane.

Normal Forward Flight

In normal forward flight (nozzles at 0°), in either the wind-tunnel

or control-line flight tests, the model was generally longitudinally

stable over the small speed range covered in the tests (speeds from

55 knots down to the stall). In the flap-down condition, however, the

model had a pitch-up tendency at the stall. This observation is con-

firmed by the force-test data of figure 21 which show unstable values

of -Mym for angles of attack above about 18 ° with flaps down.

Both the flight tests and the force-test data of figure 21 also

show that at an angle of attack of about 20 ° , the model flew at about

45 knots with flaps up and about 30 knots with flaps down. For a flying

weight of 41 pounds, these speeds correspond to lift coefficients of

1.2 for flaps up and 2.6 for flaps down. This very high lift coefficient

for the flap-down condition with a very modest-sized flap indicates that

there was a very considerable thrust redirection and Jet-flap effect

caused by the Jet exhaust impinging on and being turned downward by the

lower surface of the flap. From an inspection of the geometry of the

Jet nozzles and flap, it seems very likely that the exhaust from both

Jets was impinging on the flap when the nozzles were in the normal

forward flight position of 0° deflection.

In general, the lateral stability and control characteristics of

the model were satisfactory over the limited speed range covered in the

tests for the normal forward flight conditions except at high angles of

attack (angles of approximately lO° to 20 °) where the pilot had dif-

ficuity in controlling the model in roll. This difficulty undoubtedly

resulted partly from the low or negative directional stability shown by

the force-test data of figure 23 which permitted the model to sideslip
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in random fashion so that the dihedral effect could cause considerable

random rolling moments. The difficulty of controlling the lateral motions

at high angles of attack might also have been caused by a reduction in

aileron effectiveness as the wing neared the stall. No measurements of

aileron effectiveness were made to investigate this possibility, however,

SUMMARY OF RESULTS

The results of a free-flight investigation of the stability and

control characteristics of a 1/6-scale model of the Hawker P 1127

VTOL airplane can be summarized as follows:

i. In hovering flight in still air the model could be flown smoothly

and moved easily from one position to another. The pitch and yaw Jet-

reaction controls had adequate power but the roll jet-reaction control

was about two-thirds as strong as desired for restoring the model to

steady flight after it had been disturbed.

2. Transitions from hovering to normal forward flight and back to

hovering could be made smoothly and consistently and with only moderate

changes in longitudinal trim. The model had a static longitudinal insta-

bility or pitch-up tendency throughout the transition range_ but the rate

of divergence was moderate and the model could be controlled easily pro-

vided the angle of attack were not allowed to become too high. The

lateral motions of the model at high angles of attack (lO ° to 20 °) during

the transition were difficult to control, apparently because of low or

negative directional stability at small angles of sideslip.

3- In the VTOL landing approach with the engine exhaust nozzles

deflected 90 ° to lOO °, the nose-down trim required was greater than in

the transition from hovering to forward flight whereas the instability

was about the same.

4. Vertical take-offs and landings in still air could be made

smoothly although there was a slight unfavorable ground effect on'lift

and there was a nose-down change in pitch trim near the ground. The use

of strakes on the underside of the fuselage made the ground effect on

lift favorable but increased the nose-down change in pitch trim.

5. Short take-offs and landings could be made smoothly and consist-

entlY , and there was no particular characteristic to note except that

the model experienced a decided nose-up change in pitching moment as it

climbed out of ground effect. This trim change was not noticeable on

landing, however.
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6. In normal forward flight the model was generally longitudinally

stable, but was unstable at the stall for the flaps-down case at the

higher angles of attack. The lateral motions of the model in the normal

forward flight condition were difflcult tO _ontrol at high angles of

attack (lO ° to 200), Just as they were in the transition range, apparently

because of low or negative directional stability at •small angles of

sideslip.

Langley Research Center,
National Aeronautics and Space Administration,

Langley Field, Va., February 28, 1961.
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TABLE I.- GEOMETRIC CHARACTERISTICS OF MODEL

Wing:

Sweepback of leading edge, deg ....... _ r o i " _OAirfoil section • • • Hawker symmetrical, t/c = O. o t 0.07 tip

Aspect ratio ......................... 3.i

Area, sq ft ......................... 5.32

Span, ft ........................... 4

Mean aerodynamic chord, ft ................. 1.31

Incidence angle, deg ..................... 1
Dihedral angle, deg ..................... -lO

Overall length of model, ft .................. 7.}8

Vertical tail:

Sweepback of leading edge, deg . . • s_ r cal "t/c" " _ c 52Airfoil section ...... Hawker t i , = 0 onstant

Aspect ratio ........................ . . 0.72

Area, sq ft ......................... 1.ll

Height, ft . . ........................ 0.84

Horizontal tail (all movable) :

Sweepback of leading edge, deg .......... ='01_ c 45Airfoil section ...... Hawker symmetrical, t/c" onstant

Aspect ratio ......................... 2.76

Area, sq ft ........................ 1.005
Span, ft ........................... 1.67

Jet controls :

Distance of roll Jets from fuselage center line, ft ..... 2

Distance of forward pitch-yaw Jet from center of gravity,
ft ............................. 2.86

Distance of rear pitch-yaw Jet from center of gravity,
ft ............................. 3.58

Engine exhaust nozzles:
Total area of forward nozzles, sq in............. 15. i0

Total area of rear nozzles, sq in .............. 13.20
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TABLE II.- MASS CHARACTERISTICS OF MODEL

We ight:
With landing gear, ib .....................

Without landing gear, lb ...................

Control-line tests, with landing gear, lb ............

Distance of c.g. from leading edge of M.A.C., percent M.A.C. • •

Moments of inertia:

Ix, slug-ft 2 ........................

Iy, slug-ft 2 ........................

ft2
IZ, slug ...... ........ _ ..........

43
41

45

22

. o.451

2.461

• 2.832
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TABLE III.- HORIZONTAL-STABILIZER INCIDENCES USED FOR

TRIM AT VARIOUS CONDITIONS

V, knots m, deg A, deg it, deg

(8)
5f = 50°

O

22

22
22
22

33

33
33
h.,h..5

4h-.5

_4.5

0

22
22
22

33

33
33
44.5
44.5

0

O

5
lO

15

5

i0

15
5

i0

15

90

85

75
65
60

65

55
45
%5

3o

lO

5f = 0°

6

7
7

2

7
7
5

3

0

5
lO

i5

5

i0

i5
iO
i5

t

90

75
65
60

70

60

55
5O
35

6
6
8

7
8

5'
5'

a_he Jet controls and horizontal stabilizer were operated

together, with the maximum Jet control force being obtained at the

maximum_n_li_imumhorizontal-stabilizer incidences of 13° and 0°.
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Lift

_U_e__ _ gYw_
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Figure i.- Sketch of wind axis system showing positive direction of

forces, moments, and angles.
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Figure 2.- Sketch of body axis system showing positive direction of
forces, moments, and angles.
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0 4" 8 i2 16 20 24
'.'._.__.__.__.__._.].__)

i 48.(

roll jet location

_ o 6 o

Axis of for_rd nozzle -J

.$ _ roll _et location

Axis of rear nozzle

/

< "29._ _ ,3.2--,

I

_.t=__z_- - -

91.0Voz_lcal center llne of nezzle _----I___

i_t- 4,o

• _ II_L

Figure _.- _hree-vlew sketch of the model used in the tests. All dimen-

sions are in inches.
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Figure 6.- Three-view sketch of the model showing the location of

strakes and wing-tank pylons. All dimensions in inches.
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h, In,

Figure i0. o Effect of ground proximity on the lift and longitudinal trim

of the model. Referred to the body axes.
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Figure i0.- Concluded.
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(a) Basic model with control Jets off and 5f = 0°.

Figure ii.- Variation of static longitudinal stability of the model with

height above the ground. The main Jet nozzles are fixed with respect
to the airplane and are perpendicular to the ground at e = 0°. e is

measured relative to a ground angle of 9°. Referred to the body axes.

it = 50.
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(b) Model with control Jets off,

4

8f = 0°, and strakes on.

Figure ii.- Continued.
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(c) Model with control Jets off, 8f = 0°, and landing-gear doors

extended.

Figure ii.- Continued.
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(d) Model with control Jets off and 8f = _0 °.

Figure Ii.- Continued.
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(e) Basic model with control Jets on and

8 8 XO

8f = 0°.

Figure ii.- Continued.
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(f) Model with control Jets on and 5f = 50°.

Figure Ii.- Continued.
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(g) Model with control Jets on, 8f = 0°, and strakes on.

Figure ii.- Continued.
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(h) Model with control Jets on, Bf = 0°, and landing-gear doors
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Figure ll.- Concluded.
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(a) Basic model with control Jets off and 8f = 0°.

Figure 12.- Variation of static lateral stability of the model with

height above the ground. The main Jet nozzles are fixed with respect

to the airplane and are perpendicular to the ground at e = 0°. e is

measured relative to a ground angle of 9°. Referred to the body axes.
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(b) Model with control Jets off, Bf = O°j

Figure 12.- Continued.

and strakes on.
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(c) Model with control Jets off, 8f = 0°, strakes and wing-tank
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Figure 12.- Continued.
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Figure 12.- Continued.
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Figure 13,- Effect of flaps and control Jets on the static lateral sta-

bility Of the model when close to the ground, The main Jet nozzles

are fixed with respect to the airplane and are perpendicular to the

ground at e = o°. 0 is measured relative to a ground angle of 9°.

Referred to the body axes. it = 5°.
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ABSTRACT

The Hawker P 1127 airplane is a horizontal-attitude VTOL fighter

with a single Bristol Siddeley BS 55 turbofan engine exhausting through

four rotatable nozzles, two on each side of the fuselage, located beneath

a swept wing mounted on top of the fuselage. The model could be flown

successfully in hovering and transition flight although the Jet-reaction

roll control was somewhat weak and the model had a strong pitchup tendency

in transition. Take-offs and landings (both VTOL and STOL) could be made

smoothly and easily. In forward flight the model was longitudinally

stable in the flaps-up condition but was neutrally stable with flaps down

at the higher angles of attack.
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